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An increasing amount of research has recently strengthened the case for the existence of

iron dysmetabolism in prostate cancer. It is characterized with a wide array of differential

expression of iron-related proteins compared to normal cells. These proteins control iron

entry, cellular iron distribution but also iron exit from prostate cells. Iron dysmetabolism

is not an exclusive feature of prostate cancer cells, but it is observed in other cells of the

tumor microenvironment. Disrupting the machinery that secures iron for prostate cancer

cells can retard tumor growth and its invasive potential. This review unveils the current

understanding of the ways that prostate cancer cells secure iron in the tumor milieu and

how can we exploit this knowledge for therapeutic purposes.

Keywords: prostate cancer, iron metabolism, transferrin receptor 1, iron responsive element-binding protein 2,

ferroportin, hepcidin, tumor associated macrophages, cancer stem cells

INTRODUCTION

Cancer cells are known for their voracious appetites for different metabolites and nutrients in order
to satisfy their metabolic needs (1). Creating an environment that suits these needs means that
cancer cells have to adapt manifold; they have to be able to secure energy for their metabolism
in hypoxic conditions, but also they should be able to increase the transport of metabolites and
micronutrients, even by “stealing” from their “neighborhood” (1). Eventually, this strategy proves
successful for cancer cells, because they will invade transport fluids (blood, lymph) and spread
across the body. One of the micronutrients that provides cancer cells the ability to grow and survive
is iron. Its importance has been observed when cancer cells are introduced in iron-rich and iron-
starving conditions. Iron-rich supply helps cancer cell growth, while iron starvation retards their
growth (2, 3). But, cancer cells face a problem due to their high cellular iron supply; iron overload
can cause an increase in reactive oxygen species, which are harmful for cell structures. Cancer cells
have developed mechanisms that protect them against oxidative damage. These mechanisms are
used by different cancers, including prostate cancer (PCa) cells. The increased activity of enzymes
with antioxidant properties ensures a proper environment for cancer cells, where they can use high
levels of iron without the accompanying side effect of oxidative damage (4–6). Thus, only very high
levels of cellular iron can be detrimental for cancer cells (7).

Iron is used by cancer cells for important biochemical reactions, such as DNA synthesis,
mitochondrial metabolism, tumor proliferation through increased angiogenesis, andmetastasis (8).
In PCa, iron is also important for tumor proliferation. Similar to other cancers, PCa cells need
iron for their survival, including the use of iron for the activity of enzymes that control androgen
receptor (AR) transcriptional activity, which is a known promoter of PCa (9). What is more, iron is
needed by PCa cells to “reorganize” the intracellular enzymatic activity in order to increase energy
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production and extracellularmatrix degradation (10, 11). Clinical
data suggest that, in PCa, there is an increased iron sequestration
in cancer cells, while in normal cells adjacent to PCa cells iron
levels are low (12, 13).

IRON ENTRY IN PCA CELLS

Transferrin receptors (TFRs) are major routes of transferrin-
bound iron (TBI) into cells (14). TFR is responsible for
endocytosing TBI and releasing it in intracellular compartments
(14). Inside endosomes created during this process iron is
reduced and finally released in cytoplasm via divalent metal
transporter 1 (DMT1) (14). PCa cells need more TFRs to
increase their iron uptake, which is why we observe upregulation
of these receptors in this cancer (15–19). But, studies with
cultured PCa cells have shown that iron can enter PCa cells even
when TFR is blocked (10). PCa models show that TFR gene
(TFRC) is a downstream target of the prostatic oncogene MYC
(18, 19), while TFRC expression has been used successfully to
detect precancerous prostate lesions with transferrin-based PET
imaging (19). The dysregulation of TFR expression is not the only
anomaly detected during TBI uptake in PCa cells. Endocytosed
TFR is not localized in perinuclear sites in PCa (as it happens in
non-tumorous prostate cells), but is rather distributed diffusely
in the cytoplasm and cellular extensions (17). This could indicate
that intracellular TFR traffic is another strategy used by PCa cells
to redistribute iron for their metabolic needs (17). TFR has also
been linked with AR gene expression, which is themain promoter
of PCa. This link is at least partially mediated via the activity of
vacuolar ATPase (V-ATPase), which is crucial in maintaining low
endosomal pH (20–22). Low endosomal pH ensures the release
of iron from transferrin, but when V-ATPase is inhibited less
iron will be released from the cytoplasm (20). Low intracellular
iron conditions increase the stability of hypoxia-inducible factor
1 alpha (HIF-1α), which in turn downregulates AR expression.
This is important since AR downregulation retards PCa cell
growth. Therefore, V-ATPase suppression has been proposed as
an important target in PCa because it can inhibit tumor growth
in different cancer lines, even in those resistant to androgen
ablation (21). But, the activity of currently used compounds
for suppression of V-ATPase is not cell specific which is why
they are responsible for serious side effects observed in human
patients (23).

Other important molecules studied in PCa are six-
transmembrane epithelial antigen of prostate (STEAP) proteins.
They are expressed in prostate tissue, where they serve numerous
physiologic functions. STEAP2 is one of the most interesting
proteins of the STEAP family known for its iron reductive
properties (24). It is predominantly expressed in prostate tissue,
located in the plasma membrane, but also in the intracellular
vesicular structures (25). STEAP2 is frequently upregulated
during prostatic malignancy, and importantly, its expression is
in relation with Gleason score (24–26). Knockdown of STEAP2
significantly suppresses the proliferation of prostatic cancer,
though current data suggest that this effect occurs probably
due to STEAP2 ability to induce enzymatic activity that results

in degradation of extracellular matrix (24, 27). The ability of
STEAP2 to influence iron metabolism in PCa has not been
studied, though the role of STEAP2 in iron metabolism has been
observed in erythroid cells, choroid plexus, and gastrointestinal
tract (28). On the other hand, intracellular six transmembrane
prostate protein 2 (STAMP2, also known as STEAP4), which is
another protein with metalloreductase activity, has been linked
with PCa growth through dysregulation of iron metabolism
(29, 30). Furthermore, it has to be noted that STAMP2 activity
as a metalloreductase is more prominent compared to other
STAMPs (31). Also, STAMP2 is regulated by AR, and similarly
to STEAP2, its expression is linked with Gleason score (30).
In other cancers, STAMP2 is involved in iron transport to
mitochondria, but this action of STAMP2 has not been studied
in PCa (32).

INTRACELLULAR IRON PROTEIN
MACHINERY IN PCA

The most important intracellular regulators of iron metabolism
are iron responsive element-binding proteins (IRPs). IRPs
regulate the expression of iron import and export proteins (14).
In low iron concentrations IRPs stimulate TFR1 upregulation and
ferritin downregulation which ensures increased availability of
iron for cellular needs (33). Although IRPs can modulate FPN
activity as well, the existence of IRP-insensitive isoforms of FPN
and of other more potent modulators of FPN make IRPs action
on FPN modest compared to its actions on TFR1 and ferritin
(34). Indeed, this observation has been confirmed in cancer cells
as well (35).

In PCa IRP2 is upregulated to ensure proper amount of
iron entry in PCa cells (16) (Figure 1). This effect occurs due
to TFR1 upregulation and ferritin downregulation caused by
IRP2 (16). The importance of IRP2 in PCa is observed during
IRP2 knockout; downregulation of IRP2 significantly reduces
proliferation of PCa cells in a similar fashion to iron chelation
(16). On the other hand, loss of IRP1 does not seem to have
profound implications on PCa iron metabolism and tumor
growth (16). IRP2 dysregulation seems to be the norm in other
cancers as well, where the consequences of IRP2 overexpression
are similar to PCa (3, 36, 37). It is still not known what is the
cause behind overexpression of IRP2 in PCa, but oncogenes are
supposed to be potential culprits (16, 35).

IRON EXPORT IN PCA CELLS

Ferroportin (FPN) is the only known cellular iron exporter.
In many cancers its activity is downregulated, which increases
iron pool in cancer cells (38–40). Similarly, FPN dowregulation
has also been observed in PCa (41–44). By stimulating FPN
activity we can curb the growth and proliferation of PCa
(41–45). This occurs due to cellular iron deprivation caused
by increased activity of FPN. Furthermore, consistent FPN
overexpression overrules compensatory mechanisms used by
PCa cells to replete iron depots via increase in iron import
(16, 44). More importantly, FPN overexpression reduces tumor
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FIGURE 1 | Iron metabolism in prostate cancer microenvironment. Prostate cancer cells are characterized with a differential expression of iron-related proteins

compared to normal cells. These changes include upregulation of iron-import proteins (TFR1), overexpression of intracellular regulators of iron metabolism (IRP2),

downregulation of iron export (FPN). In addition, recent data suggest that prostate cancer cells increase their labile iron pool by increasing the activity of hydrogen

pumps and ferrireductases, which causes increased release of iron from endosomes. These actions will further increase labile iron pool. In addition, prostate cancer

cells interact with their surroundings to increase iron delivery. This is believed to be done by stimulating TAMs to produce Lp2, which then binds iron and delivers it to

cancer cells. Also, PCa cells secrete hepcidin locally to reduce their iron export through FPN downregulation and Lp2 to increase iron supply. Iron dymetabolism is

also a feature of CSCs and sensescent prostate cells, whose numbers are increased in cancer. It is believed that iron dysregulation observed in CSCs is important for

their survival and renewal of cancer cells. On the other hand, senescent prostate cells are known to secrete different molecules, some of which can directly influence

the production of iron-related proteins by prostate cancer cells. CSC, cancer stem cell; Feph, ferritinophagy; FPN, ferroportin; Hepc, hepcidin; IL-6, interleukin-6; IRP,

iron responsive element-binding protein; LIP, labile iron pool; Lp2R, lipocalin 2 receptor; SASP, senescence-associated secretory phenotype; STAMP2, six

transmembrane prostate protein 2; TAM, tumor-associated macrophage; TFR1, transferrin receptor 1; V-ATPase, vacuolar ATPase; Wnt, wingless/integrated pathway.

proliferation in different types of PCa’s, and irrespective of
androgen sensitivity (44).

FPN expression is regulated by different stimuli. It is
the main target protein of hepcidin, which induces FPN
degradation (46). So, it is no surprise to find that local
hepcidin is upregulated in cancer cells, including PCa (47–49).
Prostatic hepcidin is regulated via interleukin 6 (IL6), similar
to systemic (liver) hepcidin, but non-cannonical pathways,
such as wingless/integrated (Wnt) pathway, sclerostin domain-
containing protein 1 (SOSTDC1) and bone morphogenetic
protein 4/7 (BMP4/7) are also responsible for PCa hepcidin
expression, which suggests a differential control of hepcidin
expression in PCa compared to liver hepcidin expression (47)
(Table 1). Further evidence of involvement of hepcidin in PCa
pathophysiology is its relation with prostate-specific antigen
(PSA). In PCa cells with high hepcidin expression there exists a
positive correlation between hepcidin and PSA expression, while
markers of tumor proliferation and survival are significantly
increased in PCa cells with hepcidin upregulation (48). In
experiments with cultured PCa cells loss of hepcidin expression
significantly reduces the proliferative ability of cancer cells, while
addition of hepcidin increases the proliferative ability of cancer
cell progressively (49). All these data support the notion that PCa

growth can be retarded by influencing iron export through FPN.
It is still not known how do other regulators of FPN expression,
such as inflammation, assert their influence on FPN activity in
PCa. The rationale exists, since inflammation has been shown to
promote cellular iron accumulation in different cells, but also it
can promote tumor proliferation in PCa (34, 50–52).

Another field of study with many unanswered questions
is the relation of mitochondrial iron metabolism with PCa
pathogenesis. The gene responsible for coding mitoferrin, which
is a mitochondrial iron transporter, is upregulated in PCa
patients, but the importance of mitoferrin in PCa cells has still
not been elucidated despite its proposed role in cancer (53–56).

TUMOR-ASSOCIATED MACROPHAGES
(TAMS) AND CANCER STEM CELLS (CSCS)
IN PCA; NEW PLAYERS INFLUENCED BY
IRON METABOLISM IN THE COMPLEX
PCA TUMOR ENVIRONMENT

An often overlooked player in the tumor microenvironment
are TAMs. They are leukocytes that promote tumor growth
in different cancers, including PCa (57–61). Density of
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macrophages is associated with poor prognosis and more
aggressive behavior of PCa (57–59). In PCa, TAM activity is
influenced by chemical signals from tumor cells (59). One such
signal could be the induction of lipocalin 2 (Lp2) secretion (62),
which is why increased Lp2 from TAMs has been proposed as
another strategy from cancer cells to provide additional iron for
their needs (63). Lp2 is a protein which has a strong binding
capacity for iron chelating molecules such as siderophores (64).
It is produced by neutrophils, macrophages, epithelial cells but
also by tumor cells (62–64). In-vitro and in-vivo data with breast
cancer models show that iron-loaded Lp2 produced by TAMs
can increase the iron pool of tumor cells, and consequently,
influence their growth (64, 65). The importance of Lp2 in
PCa iron metabolism is further enhanced by its frequently
observed overexpression in PCa which is related with cancer
proliferation (66–69). Furthermore, serum Lp2 has been found
in high levels in patients with PCa (69). Still, the details
of the TAM-Lip2 connection with PCa cell iron metabolism
have not been studied and should be a subject of future
studies.

In terms of their actions in tumor microenvironment
macrophages have been generally divided into cytotoxic
(M1 macrophages) and tumor promoting phenotype (M2
macrophages) (58). One of the most important population of
leukocytes in cancer including PCa are M2 macrophages. Studies
have unraveled the iron-release phenotype of these macrophages,
which would support the proliferation of neighboring cancer
cells (58, 59, 70–72). In addition, macrophages treated with
iron chelators reduce the growth of tumors and their metastatic
ability by changing their iron releasing phenotype into an
iron sequestring one (71, 72). Similarly, in PCa, iron-laded
macrophages exhibit infiltrative behavior and predict low
response to iron chelation therapy (73).

Dysregulation of the iron metabolism is not an exclusive
feature of cancer cells in PCa. Recently, it has been observed
in CSCs of PCa as well (74). This is an important observation,
because CSCs as precursors of cancer cells have been linked
with the replenishment of cancer cell numbers, metastasis and
resistance to cancer therapy (75). In models with cultured CSCs,
iron supplementation helps cellular growth, while iron chelation
retards it (76–78). More importantly, iron chelation has the
benefit of having the impact on stemness markers of CSCs even
when standard chemotherapy fails (76). In PCa, CSC labile iron
pool is increased due to upregulation of iron import proteins. The
intracellular regulators of iron metabolism in PCa CSCs show
distinct features; IRP1 is upregulated in both mRNA and protein
levels due to inefficient Fe-S cluster assembly in mitochondria,
while IRP2 is not (74). It is interesting that while IRP2 is subject of
regulatory control by iron levels in CSCs, the same does not occur
in differentiated cancer cells (3, 16, 36, 74, 79). This suggests a
possible scenario for progression of iron dysmetabolism in PCa;
it involves IRP2 overexpression in differentiated cancer cells as
an important moment when a full blown loss of the regulatory
mechanisms occurs in cancer cells, which would create a vicious
cycle of iron overload and resultant progressive proliferation of
cancer cells. This might have important clinical implications for
the treatment of PCa, and in other cancers as well.

IRON DYSMETABOLISM IS A
CHARACTERISTIC OF AGING PROSTATE
CELLS?

It is well-known that PCa is a disease of the old age, and similarly,
prostate cell dysmetabolism could be an important pathogenic
feature of aging prostate cells. It is known that the increased
number of senescent cells is associated with age-related diseases
(80). Recent data suggest that prostate senescent cells suffer
from an increased iron load due to changes in the expression
of proteins that regulate cellular iron transport (81). Iron
dysregulation observed in experimental models with senescent
prostate epithelial cells is intriguing and strikingly similar to PCa
cells; it is characterized with TFR1, IRP2, ferritin upregulation,
while FPN though upregulated, is mostly localized intracellularly,
which means that it cannot participate in iron export (81).
The reason behind these changes in senescent cells occur due
to impaired ferritinophagy, which means that increased iron is
sequestered into ferritin. This would signal senescent cells that
there is a lack of intracellular iron, which in response increase
iron import through TFR1 upregulation. Chemical induction of
ferritinophagy reverses this process (81). Future studies should
investigate potential disturbances of the process of ferritinophagy
and its role in PCa.

Senescent cells accumulate in cancer and contribute to the
pool of cancer cells by releasing chemicals that promote tumor
growth (82). Some of these chemicals, such as Wnt ligands and
IL-6, are known as upregulators of hepcidin in PCa cells (47, 83).
On the other hand, it remains to be seen if the observed iron
phenotype of prostate senescent cells affects its secretome and
subsequent tumor growth.

SYSTEMIC IRON METABOLISM AND PCA

Clinical studies suggest that homozygote carriers of
hemochromatosis mutations are not especially in risk for
PCa (84, 85). Iron has also been ruled out as an important
occupational risk factor which could influence PCa occurrence
(86, 87). Similarly, dietary iron intake does not seem to increase
the risk for PCa, though there are doubts that iron intake might
be associated with aggressive forms of PCa, especially in men
with low intake of antioxidant foods (88, 89). On the other
hand, data from a Dutch cohort with PCa patients showed that
the combined intake of oxidants (iron) and antioxidants was
not related with risk of advanced PCa (90). The Dutch cohort
registered heme iron intake, while CARET cohort registered
total iron intake, which might have been higher compared to
their European counterparts. In any case, the relevance of Dutch
cohort compared to CARET cohort is strengthened by a much
higher number of patients included in the Dutch study (88, 90).
Also, the associations between high iron intake/low antioxidant
intake and aggressive PCa observed by CARET were not strong
not just due to a smaller number of patients but also due to
the fact that the associated positive trend was not statistically
significant. Finally, other factors might have influenced results
from CARET cohort; PCa patients from CARET cohort had
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TABLE 1 | Expression, regulation and effects of iron-related proteins in prostate cancer cells*.

Iron-related protein Expression Regulation Main effects References

TFR1 ↑ MYC, IRP2 Increased iron import (14–18)

IRP2 ↑ Oncogenes (MYC?) Increased iron import (15)

Ferroportin ↓ Hepcidin, MZF1, Nrf2, ZNF217 Decreased iron export (40–44, 47)

Hepcidin ↑ SOSTDC1, BMP4/7, IL6, Wnt

pathway

Decreased iron export (46–48)

STAMP2 ↑ Androgen receptor Increased reduction of Fe3+ to Fe2+ (28, 29)

V-ATPase ↑ Ac45 (V-ATPase associated

accessory protein)

Increase in iron release from endosomes (19, 21)

*It includes only proteins whose activity has been shown to affect iron metabolism of prostate cancer cells. BMP4/7, bone morphogenetic protein 4/7; IL6, interleukin 6; IRP2, iron-

responsive element-binding protein 2; MZF1, myeloid zinc-finger 1; Nrf2, nuclear transcription factor 2; SOSTDC1, sclerostin domain-containing protein 1; STAMP2, six transmembrane

prostate protein 2; TFR1, transferrin receptor 1; V-ATPase, vacuolar ATPase; Wnt pathway, wingless/integrated pathway; ZNF217, zinc-figure protein 217.

higher body mass index (BMI), which is important, since studies
suggest that BMI values indicative of obesity are related with
higher Gleason score (or more aggressive PCa) (91, 92). It is
interesting to notice that blood donors and blood recipients
are not significantly protected or at risk from PCa, which
further strengthens the case that systemic iron overload is not a
significant factor for PCa risk (93, 94).

Other serummarkers of iron metabolism have been studied in
PCa, albeit in studies with small number of patients. For example,
high levels of sTFR and hepcidin have been observed in these
patients (95–97). Increased levels of sTFR are to be expected,
considering the reactive TFR upregulation in erythroid cells due
to anemia (often found in patients with PCa) and the increased
expression of TFR in PCa cells. But, larger studies with different
group of patients characterized according to age, inflammatory
status, anemia status, local TFR, sTFR, and their correlations
should give more answers concerning the importance of sTFR
in PCa. On the other hand, one small study has revealed that
serum hepcidin is increased in patients with bone metastasis,
and that the increase in serum hepcidin is partly related to
cytokine production, such as IL6, which is a known upregulator
of hepcidin (97). In any case, these studies are rare and little
conclusions can be taken out of them.

More contradictory data come from studies relating ferritin
levels and its association with PCa. High and low levels of serum
ferritin have been associated with PCa risk, while others have
suggested no such association (96, 98–100). The differences in
patient numbers and selection between the studies might have
been the reason behind these discrepancies. Kuvibidilla et al.
study, which reported presence of low levels of serum ferritin
in PCa patients, included a small number of patients (100). In
addition, the statistical significance was borderline and most of
the patients did not have advanced PCa. It has to be mentioned
that normal range of serum ferritin is very wide, therefore
measurements of serum ferritin in a small number of patients,
is subjected to false positive or negative results (101–103). Chua
et al. study (which reported no association between serum ferritin
and PCa risk) included a relatively low number of patients with
PCa, and also did not have any information about the cancer
stage of the patients (99). In one of the largest studies (2002
patients) of this kind done by Wang et al., serum ferritin was

shown to be a predictor of PCa risk (98). Close examination
of the Wang et al. study reveals that the differences in median
values for serum ferritin though significant are still small. But,
when the patients were grouped according to increased levels of
ferritin, the statistical differences were increased, which means
that the biggest odds ratio for PCa risk was detected with
serum ferritin levels above 400 ng/ml. Also, this study revealed
that the diagnostic sensitivity of serum ferritin in PCa was
highest in patients with age >65 and serum ferritin >400 ng/ml.
Finally, the study revealed that higher serum ferritin values were
associated with higher Gleason score, and higher serum ferritin
was associated with high PCa tissue ferritin. This is in-line with
other studies that suggest that high serum ferritin is most likely
observed in advanced PCa (96, 104). Wang et al. study has
revealed that high serum ferritin is related with PCa risk, but
only in a subset of patients with advanced PCa, and especially
older patients. The increased serum ferritin in PCa could occur
from different sources; cancer tissue, cytokines, damaged cells
(105, 106).

TREATING PCA BY MODULATING IRON
METABOLISM

The strategy to treat PCa by modulating tumor iron metabolism
has already been subject of research. Iron chelators, first
introduced in the 1960s, have been tested as anticancer drugs for
30 years (107, 108). In PCa, the use of experimental treatment
with iron chelators goes back to 1995. In the study done by
Kovar et al. deferoxamine (DFO) reduced tumor growth by 35
and 38%, respectively, depending on the tumor cell lines used
(109). DFO efficacy was increased with co-treatment with anti-
TFR antibodies. Soon after, first human trial was realized with a
small number of patients suffering from hormone-refractory PCa
(110). The use of DFO for 8 h did not yield any significant results
in disease control. DFO failure in human trials occurred probably
due to the drugs difficulty penetrating and accumulating in PCa
cells when used in a systemic form (108). Deferiprone is another
iron-chelator that has been used to treat PCa in culturedmedium.
It has shown antitumor activity in different PCa cell lines, by
influencing tumor energy production, cell migration and tumor
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volume, but these results have not been validated in human
trials with PCa patients (73, 111). Newer iron chelators have
also shown antitumor properties but they have been only tested
in cultured cells (112, 113). It has to be mentioned that iron
chelation has its drawbacks, such as toxicity, patient compliance,
induction of reactive increase in iron import proteins, lower
efficacy with higher density of iron laded TAMs in tumors (73,
76, 107, 114).

Natural iron chelators have also been used for their antitumor
properties. Curcumin, which is the active compound of the
spice called turmeric, can suppress PCa growth. This action is
attributed to curcumins ability to chelate iron, which is why
PCa cells increase IRP activity and the expression of TFR1 in
response to curcumin treatment (115, 116). Reactive response
from tumor cells to curcumin actions can help them adapt
to iron deprivation. This is probably the reason why TFR1
blockade in addition to curcumin supplementation improves the
suppressive effect of this compound in PCa (116). It could be
that the additional effect of curcumin in PCa is mediated by
its inhibitory effect on hepcidin expression, which has already
been observed in hepatocytes, but it has not been studied in
PCa (117–119). Other compounds with iron chelating properties
have been used in PCa cultured cells, such as epigallocatechin
gallate (EGCG) (120). EGCG can retard tumor growth in PCa,
but also suppresses PSA and AR expression (121–124). The
effect of EGCG on PCa iron metabolism has yet to be studied
but we know from its use in neurons that it can increase FPN

activity and reduce hepcidin expression (125, 126). Adding to the
evidence is the observation that frequent green tea use (EGCG
is the main component of the green tea) has been associated
with lower incidence of PCa (127). On the other hand, the
effect of supplementation with different polyphenols, including
EGCG and curcumin has been studied in a randomized trial with
PCa patients. This trial has shown that supplementation which
includes EGCG and turmeric can significantly reduce PSA levels
in short-term (128). Unfortunately, this trial did not examine
direct objective evidence (prostate biopsy, MRI) that would link
more clearly supplementation with EGCG and curcumin with
PCa progression. Use of natural compounds with the ability to
modulate the iron metabolism in PCa cells has many challenges
before they can be used as new drugs in treatment of PCa. One
of the major challenges is the low bioavailability of the natural
compounds (129, 130). Nanotechnology seems to come in handy
when one wants to increase compound bioavailability. Sanna
et al. developed nanoparticles encapsulating EGCG, which were
able to increase the time to full degradation from 1 to 24 h
(130). Another important property of these nanocarriers is the
ability to have a high specificity for PCa cells. This was done
by providing nanoparticles with ligands that are able to bind to
one of the most frequently observed antigen in PCa cells, such
as prostate specific membrane antigen (PSMA) (130). The use
of nanoparticles induces the inhibition of cancer cell viability
more potently compared to “normal” EGCG, in both, in-vitro
and in-vivo experiments (130). Similar results were achieved

TABLE 2 | Therapeutic possibilities of the manipulation of iron metabolism in prostate cancer.

Compound Model of study Mechanism of action References

Suramin Prostate cancer cell cultures Decreased iron import by blocking the

binding of TF to TFR

(132)

Anti TFR antibody+deferoxamine Prostate cancer cell cultures Anti TFR antibody reduces iron import

Deferoxamine acts via iron chelation

(108)

Anti TFR antibody+curcumin Prostate cancer cell cultures Anti TFR antibody reduces iron import

Curcumin acts via iron chelation

(115)

Deferiprone Prostate cancer cell cultures Deferiprone acts via iron chelation (110)

Deferiprone In-vivo animal model with

implanatable prostate cancer cell

cultures

Deferiprone acts via iron chelation (72)

DFO+Dp44mT Prostate cancer cell cultures DFO+Dp44mT act via iron chelation (111)

Dp44mT Prostate cancer cell cultures HDp44mT acts via iron chelation (112)

EGCG Prostate cancer cell cultures EGCG acts as a possible iron chelator (119)

Anti IRP2 lentiviral shRNA Prostate cancer cell cultures Decrease of iron import (15)

Nrf2 Prostate cancer cell cultures Increase of iron export via FPN (41)

Anti-ZNF217 siRNA Prostate cancer cell cultures Increase of iron export via FPN (44)

Human FPN cDNA clone Prostate cancer cell cultures Increase of iron export (43)

Human FPN and MZF1 plasmids Prostate cancer cell cultures Increase of iron export (40)

Anti-hepcidin antibody Prostate cancer cell cultures Increase of iron export (46)

Anti-hepcidin siRNA Prostate cancer cell cultures Increase of iron export (48)

Anti-STAMP2 siRNA Prostate cancer cell cultures Decrease in reduction of Fe3+ to Fe2+ (29)

Concanamycin Prostate cancer cell cultures Decrease of intracellular iron release from

endosomes via V-ATPase inhibition

(19)

DFO, deferoxamine; Dp44mT, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone; EGCG, epigallocatechin gallate; FPN, ferroportin; MZF1, myeloid zinc-finger 1; Nrf2, nuclear

transcription factor 2; shRNA, small hairpin RNA; siRNA, small interfering RNA; STAMP2, six transmembrane prostate protein 2; TFR, transferrin receptor; V-ATPase, vacuolar ATPase.
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with curcumin loaded nanoparticles (131, 132). In any case, it is
pertinent for future studies to evaluate the concrete mechanistic
model of action of EGCG and curcumin in PCa iron metabolism.

Recent data suggest that the antineoplastic arsenal of iron
therapy in PCa is wide and with different available options. In
addition to the already established antitumorous effect of local
TFR1 blockade (109, 133), emerging data has revealed that local
iron dysmetabolism can also be tackled by local suppression of
hepcidin, IRP2, V-ATPase, STAMP2, and stimulation of FPN
activity (16, 20, 30, 41, 42, 47) (Table 2). These results further
strengthen the case for cellular iron deprivation therapy as a
viable option in treatment of PCa.

CONCLUSION

Iron dysmetabolism is a feature of different cancer cells.
Accumulating data suggest a similar scenario for PCa cells as
well. The picture that has unfolded shows how PCa cells are
able to manipulate iron metabolism for their purposes. The
main changes include the overexpression of iron import proteins
(TFR1), intracellular regulators of iron import (IRP2), proton
pumps that cause intracellular iron release, and ferrireductases
such as STAMP2. In addition, the decrease of iron export
(through FPN) is also an important strategy used by PCa cells
to secure abundant iron for their needs. But, the full picture of
the contribution of iron transport proteins remains unsolved.
For example, the contribution of DMT1 in PCa is unknown,
with data from tumor initiating cells showing no specific role
of this protein in the iron transport of these cells (74). Another
unexplained issue is the role of non-transferrin bound iron
(NTBI) in PCa, especially during systemic iron load. On the
other hand, the emerging role of zinc transporter proteins in
the transport of NTBI in different cells does not seem to be
translated in PCa cells, because most of these proteins are
downregulated in prostate tumor cells, which probably serves as
a protective strategy of prostate tumor cells against intracellular
zinc accumulation (14, 134). The unknown role of DMT1 and
probably irrelevant contribution of zinc transporters in iron
transport begs the question how do PCa cells secure iron even
when TFR is blocked? (11).

Recently, studies have revealed the increased complexity of the
iron dysmetabolism in PCa cells, which indicates that cancer cell
proliferation is related with the iron phenotype of other cells of
the tumor microenvironment, such as TAMs and CSCs. TAMs
are influenced directly by tumor cells and they show an iron-
releasing phenotype which suits cancer cells. We do not know
exactly how do TAMs influence the iron pool of PCa cells, but
FPN and Lp2 seem to be obvious suspects. Furthermore, the
study of iron dysmetabolism in TAMs has not been accompanied
by examination of the role of inflammatory signaling in shaping

iron metabolism of PCa cells, which should be a focus of future
studies. This is important considering that inflammatory signals
are known as upregulators of systemic and prostatic hepcidin.

Apart from PCa cells, TAMs and CSCs, other cells of the
prostate tissue are important to understand temporal changes
in iron metabolism in PCa. For example, senescent prostate
epithelial cells show striking similarities with PCa cells in terms
of the changes in the expression of iron-related proteins. This
is important because senescent cells accumulate in cancer and
contribute to the pool of cancer cells by releasing chemicals that
promote tumor growth. Still, the role of the iron phenotype of
prostate senescent cells in affecting tumor growth in PCa has
yet to be observed considering the lack of studies in this area of
research.

What about adjacent normal prostate cells, how do they
behave in PCa microenvironment? Interestingly, in-vivo data
show that normal cells adjacent to PCa cells suffer from iron
deficiency, which may suggest that iron-hacking strategy could
be one of the mechanisms used by prostate tumor cells to secure
abundant iron (12, 13). How could this action occur is still
unknown, though the logical target could be FPN of normal cells.

Clinical data with human patients show that iron
dysmetabolism found in PCa cells is generally a local
phenomenon not related to changes in systemic iron metabolism
(90, 98). Details from these studies suggest that systemic iron
load might be associated with PCa in a subset of older patients
with high levels of ferritin, though it is not known if high iron
load in these cases is of primary importance or it has a secondary
role by aggravating the already dysregulated iron metabolism
found in PCa cells. Bigger studies with a significant number of
patients with different stages of PCa should explain important
questions in this respect by examining the role of systemic
hepcidin, sTFR, and other markers of global iron metabolism.

Finally, the importance of iron dysmetabolism for the survival
of PCa cells has been tested in cultured cells. Results show
that growth of PCa cells is suppressed when compounds that
can affect iron metabolism of cancer cells accumulate in PCa
cells. These results have been obtained with iron chelators,
inhibitors of TFR1, IRP2, hepcidin, V-ATPase, STAMP2, but
also with stimulators of FPN activity. But, the translation
of these results from in-vitro conditions to human trials
is associated with many challenges, which as recent data
suggest, might be curbed with the use of nanocarriers that
increase compound bioavailability and enable their cell specific
delivery.
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